BE2M31ZRE - Speech processing Spectral characteristics of speech signal

Doc. Ing. Petr Pollák, CSc.

February 20, 2022 - 23:19

Content

- Time-domain and frequency-domain representation of speech signals
 - Computation of DFT for speech (FFT, weighting, frequency resolution)
 - Filter banks
 - Preemphasis

• Linear Predictive Analysis - AR modelling

- Basic principles of LPC, LPC spectrum, AR model
- Algorithms of computation (Levinson-Durbin, Burg)

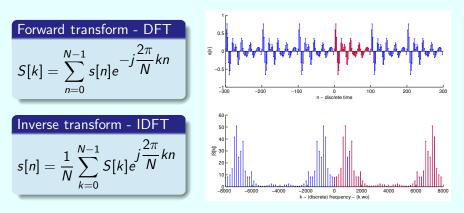
Formant Analysis

- Formant definition and meaning
- Methods of formant estimation

Part I

DFT-based spectral characteristics

Discrete Fourier Transform (DFT) - basic properties

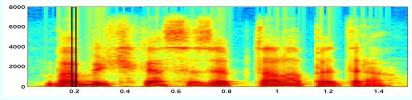


- **Transform** : finite-length discrete signal \rightarrow \rightarrow finite-length discrete spectrum
- Frequency resolution : N spectral samples

 \rightarrow frequency range $0 \div f_s$ or $-\frac{f_s}{2} \div \frac{f_s}{2}$ resp. $\rightarrow \Delta_f = \frac{f_s}{N}$

• **FFT**: the algorithm for efficient and fast computation $(N = 2^n !!!)$

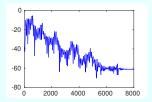
Various spectral representations of an utterance



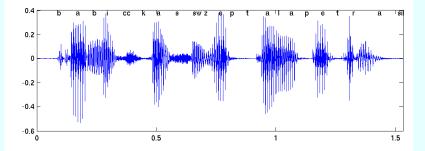
Spectrogram of an utterance

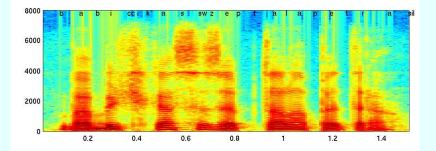
!!! Long-time (averaged) spectrum - meaning-less representation !!!

Short-time spectral representations (for selected S-T frame) DFT spectrum:



Time- and frequency-domain representation of an utterance



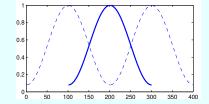


Specific settings for speech analysis:

- speech is non-stationary
 - \Rightarrow processing in short-time frames is necessary (spectrogram)
- speech is quasi-stationary
 - (i.e. stationary in short-time sense approx 10-100 ms)
 - \Rightarrow 20-30 ms length of short-time processing frame
- DFT spectrum standardly affected by spectral leakage
 ⇒ using of weighting window is necessary (Hamming)
 ⇒ segmentation with overlapping is necessary (usually 50%)

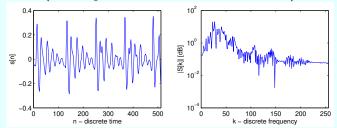
$$w[n] = 0,54 - 0,46 \cos rac{2\pi n}{N}$$

pro $0 \le n \le N - 1$.

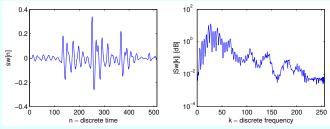


Spectral leakage in short-time spectrum of speech

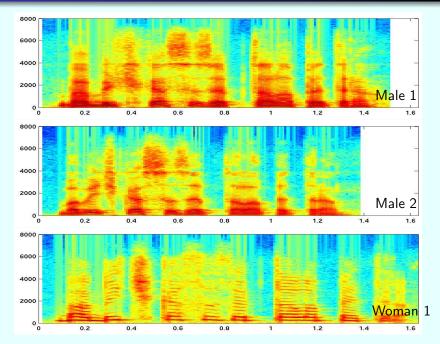
Spectrum of unweighted frame - spectral leackage (masking of low-level details in HF band)



Spectrum of weighted frame - **spectral leackage is minimized** (low-level details in HF band are visible)



Variability of utterance with same contents - influence on f_o

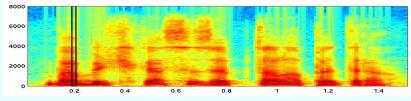


- particular phones can be resolved
- stochastic component is presented
- information about periodicity (f_o) is presented
- for typical values of f_s rather high number of spectral samples (redundant information)

₩

- Smooted spectral characteristics more suitable choice
 - filter-banks (non-linear frequency scale)
 - LPC
 - cepstral analysis

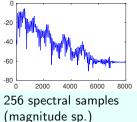
Various spectral representations of an utterance

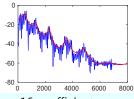


Spectrogram of whole utterance

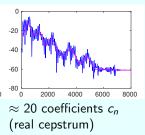
Short-time spectral representations (for selected S-T frame) LPC spectrum: Cepstrum:

DFT spectrum:





 \approx 16 coefficients a_k (autoregressive coef.)



Spectral analysis using filter banks

 $\textbf{Main purpose} \rightarrow \text{computation of power (energy) in given freq. bands}$

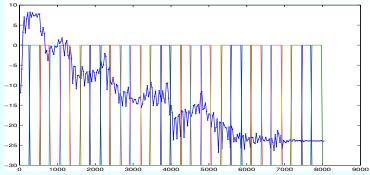
FB is typically based on DFT

 \Rightarrow filter are described by weights of particular DFT-bins for given frequency resolution (NDFT) and f_s

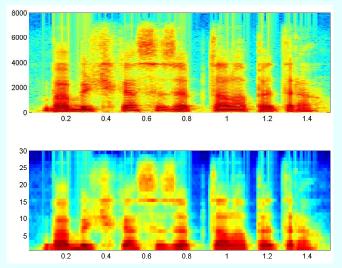
$$G_{mel}[j] = \sum_{k=0}^{N/2} |S[k]|^2 H_j[k]$$
 for j = 1, ..., M

<u>M - number of bands</u>

- according to f_s, NDFT and type of FB



Spectral analysis using filter banks

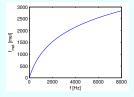


Linear scale - DISADVANTAGE - rough resolution in low-frequency band and too detailed resolution in high-frequency band (not related to the perception of frequency)

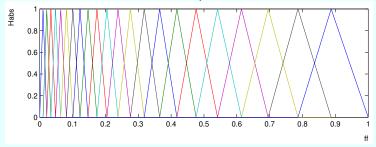
Filter bank with non-linear mel-frequency axis

Non-linear frequency warping - melodic scale

$$f_{mel} = \text{Mel}(f) = 2595 \log_{10} \left(1 + \frac{r}{700}\right)$$
$$f = \text{InvMel}(f_{mel}) = 700 \cdot (10^{\frac{f_{mel}}{2595}} - 1)$$



Triangular mel-scale filter bank (used for MFCC computation)



BF is again realized on the basis of DFT

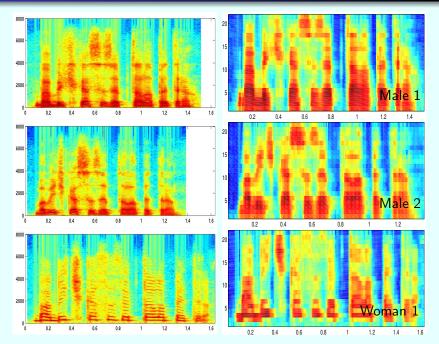
- \Rightarrow particular filters weights for given NDFT and f_s
- \Rightarrow computation principle same for various FB
- \Rightarrow other FB = just other weigths

$$G_{mel}[j] = \sum_{k=0}^{N/2} |S[k]|^2 H_{mel,j}[k]$$
 for j = 1, ..., M

<u>M - number of bands</u> typical value 20-30 bands

- according to f_s and NDFT
- 22 for $f_s = 8$ kHz and frame length of 25 ms
- 30 for $f_s = 16$ kHz and frame length of 25 ms

Variability of the utterance within mel-based spectrogram



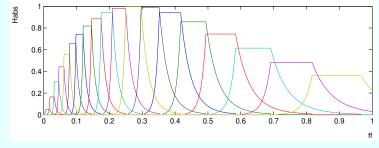
Filter bank with Bark frequency axis

Bark scale - defined on the basis of critical bands

$$\Omega = \text{Bark}(f) = 6 \ln \left(\frac{f}{600} + \sqrt{\left(\frac{f}{600}\right)^2 + 1} \right)$$

$$f = \text{InvBark}(\Omega) = 600 \cdot \sinh \frac{\Omega}{6}$$

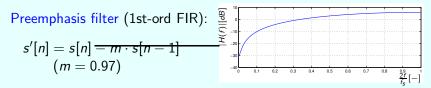
Trapezoidal Bark-scale filter bank (used for PLPC computation) (contains equal-loudness curves and application of intensity law)



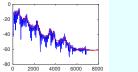
FB is realized again on the basis of DFT (for given NDFT a f_s)

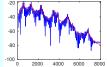
Preemphasis - compensation of HF-spectrum attenuation

Downslope of magnitude spectrum - high frequencies - lower energy

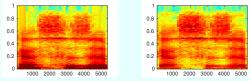


Impact of preemphasis in short-time spectrum (DFT and LPC)



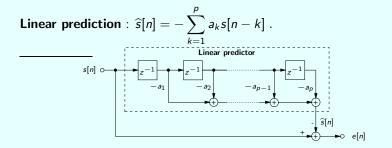


Impact of preemphasis in spectrogram



Part II LPC, AR modelling

Linear predictive analysis



Error signal (measure of predictor quality)

$$e[n] = s[n] - \hat{s}[n] = s[n] + \sum_{k=1}^{p} a_k s[n-k] = \sum_{k=0}^{p} a_k s[n-k]$$

Principles of LPC analysis

IDEA: more precise prediction \rightarrow lower level of error signal

Criterion - power of error signal

$$J = E\left\{e^2[n]\right\}$$

Looking for coefficients $a_k \equiv$ Minimizing of prediction error \equiv looking for minimum of *J*, i.e.

$$\frac{\partial J}{\partial a_k} = 0$$
, for $k = 1, 2, ..., p \Rightarrow p$ linear equations

Solutions and computational procedures

(for varying definitions of J):

- autocorrelation method the most frequent approach (Yule-Walker)
- Levinson-Durbin alg. (fast computation of Yule-Walker eqs)
- Burg algorithm originates from lattice structure of FIR filter

$$\begin{bmatrix} R[0] & R[1] & R[2] & \dots & R[p-1] \\ R[1] & R[0] & R[1] & & R[p-2] \\ R[2] & R[1] & R[0] & \ddots & R[p-3] \\ \vdots & & \ddots & \ddots & \vdots \\ R[p-1] & R[p-2] & R[p-3] & \dots & R[0] \end{bmatrix} \cdot \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ \vdots \\ a_p \end{bmatrix} = - \begin{bmatrix} R[1] \\ R[2] \\ \vdots \\ \vdots \\ R[p] \end{bmatrix}$$

R[*k*] autocorrelation coefficients of analyzed signal <u>RESULT:</u>

 a_k autoregressive coefficients (AR model) $P_p = R[0] + \sum_{k=1}^{p} a_k R[k]$ power of error signal

AR model of signal

Decorrelating (analyzing) filter :
$$A(z) = \sum_{k=0}^{p} a_k z^{-k}$$

 $s[n] \longrightarrow A(z) \longrightarrow e[n]$

Synthesis with real error signal (ideal case)

$$e[n] \circ \longrightarrow \frac{1}{A(z)} \circ s[n]$$

<u>Synthesis with artifficial signal with unit power (AR model)</u> - G is related to the power of prediction error $(G = \sqrt{P_p})$

$$u[n] \circ \underbrace{G}_{A(z)} \to \widetilde{s}[n]$$
$$H(z) = \frac{G}{A(z)} = \frac{G}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_p z^{-p}}$$

Spectral representations of AR model

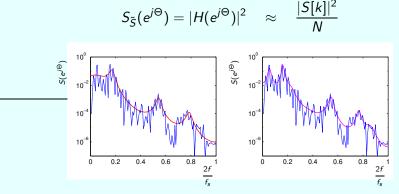
General description of AR model (AR synthesis) in Z-domain $\tilde{S}(z) = H(z) \cdot U(z)$

Description of AR model in frequency domain $S_{\tilde{s}}(e^{j\Theta}) = |H(e^{j\Theta})|^2 \cdot S_u(e^{j\Theta})$

Properties and consequences: - $S_u(e^{j\Theta})$ is flat \rightarrow shape of $S_{\bar{s}}(e^{j\Theta})$ is completely described by AR model

LPC spectrum (if $S_u(e^{j\Theta}) = 1$) $S_{\tilde{5}}(e^{j\Theta}) = |H(e^{j\Theta})|^2$ $S_{\tilde{5}}(e^{j\Theta}) = \frac{G^2}{|A(e^{j\Theta})|^2} = \frac{G^2}{|1 + a_1e^{-j\Theta} + a_2e^{-j2\Theta} + \dots + a_pe^{-jp\Theta}|^2}$ \downarrow coefficients a_k compressed spectral reprezentation

Comparison of LPC and DFT spectra



- AR model = "all-pole" filter, peak modelling (resonators of vocal tract)
- general peak = a couple of complex conjugated poles
- real pole models a peak at 0 or $f_s/2$
- higher order of AR model = more peaks in LPC spectrum
 → typical values: p = 10 for f_s = 8 kHz, p = 16 for f_s = 16 kHz

Computation of AR model parameters

Function Ipc

 $[\mathsf{a},\,\mathsf{E}\mathsf{p}]=\mathsf{I}\mathsf{p}\mathsf{c}\,\left(\,\,\mathsf{s},\,\mathsf{p}\,\,\right)\,;$

- a ... autoregressive coefficients (includinng $a_0 = 1$)
- Ep ... power of prediction error
- s . . . analyzed signal
- p . . . order of AR model

2 Computation of LPC spectrum

Function freqz

 $\mathsf{H}=\mathsf{freqz}$ ($\mathsf{sqrt}(\mathsf{Ep}),\,\mathsf{a},\,\mathsf{N}$) ;

- H . . . complex LPC spectrum
- N ... number of points of LPC spectrum

Levinson-Durbin algorithm

Fast and **recurent** computation of coefficients a_k defined by autocorrelation method (fast solution of Yule-Walker equations)

Inicialization:
$$P_0 = R[0] \quad a_1^{(1)} = k_1 = -\frac{R[1]}{R[0]}$$

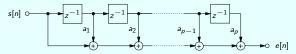
 $P_1 = P_0 \cdot (1 - k_1^2)$

Steps for m = 2, 3, ..., p: $R[m] + \sum_{j=1}^{m-1} a_j^{(m-1)} R[m-j]$ $a_m^{(m)} = k_m = -\frac{P_{m-1}}{P_{m-1}}$ $a_j^{(m)} = a_j^{(m-1)} + k_m a_{m-j}^{(m-1)}, \quad j = 1, 2, ..., m-1$ $P_m = P_{m-1} \cdot (1 - k_m^2)$ Result: $a_i = a_i^{(p)}, \quad i = 1, 2, ..., p$

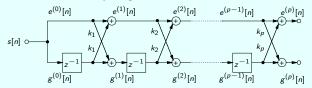
 k_k reflection coefficients (lattice structure of the filter) PARCOR coefficients (partial correlation coeff.)

AR model - standard and lattice structure

Trasnversal structure of analyzing FIR filter:



Lattice structure of analyzing FIR filter:

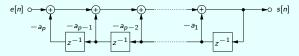


 k_k reflection coefficients, relationship k_k vs. a_k - Levinson recursion

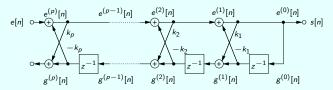
Inicialization:

$$a_1^{(1)}=k_1$$

Computation for m = 2, 3, ..., p: $a_m^{(m)} = k_m$ $a_j^{(m)} = a_j^{(m-1)} + k_m a_{m-j}^{(m-1)}, \quad j = 1, 2, ..., m-1$ Trasnversal structure of synthezing all-pole IIR filter:



Lattice structure of synthezing all-pole IIR filter:



Properties of reflection coefficients k_k :

- stable synthezing filter for $-1 < k_k < 1$
- more robust than a_k for low variability of signal (\rightarrow suitable features)
- suitable for implementation (less problems due to quantization)
- possible interpolation
- direct computation of reflection coeff. <code>possible</code> \rightarrow <code>Burg</code> algorithm

Burg algorithm

Criterion to be minimized (for each section of lattice structure):

$$J_m = \frac{1}{2} \sum_{n=0}^{N-1} \left[\left(e^{(m)}[n] \right)^2 + \left(g^{(m)}[n] \right)^2 \right] \quad \text{for } m = 1, 2, ..., p .$$

Inicialization: $e^{(0)}[n] = g^{(0)}[n] = s[n]$

Computation for $m = 1, 2, 3, \ldots, p$:

$$k_m = -\frac{2 \cdot \sum_{n=m}^{N-1} \left(e^{(m-1)}[n] \cdot g^{(m-1)}[n-1]\right)}{\sum_{n=m}^{N-1} \left(e^{(m-1)}[n]\right)^2 + \sum_{n=m}^{N-1} \left(g^{(m-1)}[n-1]\right)^2}$$

Always fulfilled $|k_m| < 1 \quad \longrightarrow \quad$ always stable solution

$$e^{(m)}[n] = e^{(m-1)}[n] + k_m \cdot g^{(m-1)}[n-1], \quad n = 0, 1, ..., N - m$$

 $g^{(m)}[n] = g^{(m-1)}[n-1] + k_m \cdot e^{(m-1)}[n], \quad n = 0, 1, ..., N - m$
Further computations: - autoregr. coeff a_k - Lev. rec., see L.-D. alg
- power of prediction error P_k - see L.-D. alg.

Part III Formants and their Estimation

Formants - definition

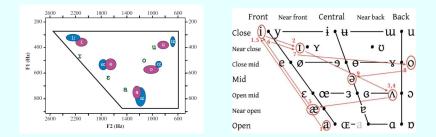
• Formant (formant frequency)

- \rightarrow central frequency of vocal tract rezonator
- significant peaks in SMOOTHED short-time spectrum
- significant formants are F1 F4, i.e. in the band upto 4 kHz
- F5 negligible (also higher estimation error)
- !! Do not confuse formant vs. pitch f₀ !!
 (f₀ is not identified in smoothed spectrum)

• Applications:

- elementar speech analysis
- formant speech synthesis
- transformations of voice characteristics (Lombard effect)

	1	E	Α	0	U
F1	300 - 500	480 - 700	700 - 1100	500 - 700	300 - 500
F2	2000 - 2800	1560 - 2100	1100 - 1500	850 - 1200	600 - 1000
F3	2600 - 3500	2500 - 3000	2500 - 3000	2500 - 3000	2400 - 2900



Formants - estimation techniques

• from smoothed DFT spectrum

- short window, zero-padding, looking for maxima
- not too precise

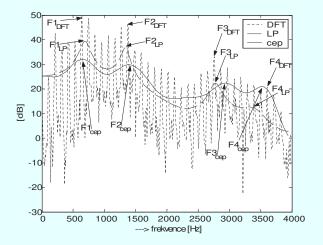
• Using LPC

- LPC analysis smoothed spectrum
- peaks in LPC spectrum rezonators of vocal tract
- the most frequently used technique

• Using cepstral analysis

- estimation of smoothed spectrum using cepstral liftering
- looking for the maxima

Phone 'a' - formants in smoothed and non-smoothed spectrum



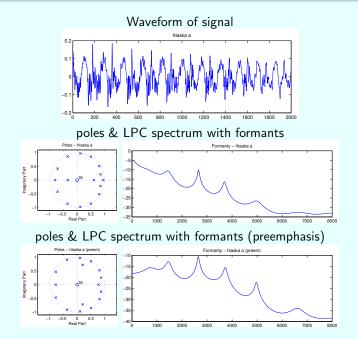
Formants - LPC-based estimation

- peaks in LPC spectrum rezonators = formants
- peaks are determined by poles p_i of transfer function H(z)

$$F_{i} = \frac{\arg p_{i}}{2\pi} \cdot f_{s}$$
$$B_{i} = -\frac{\ln |p_{i}|}{\pi} \cdot f_{s}$$

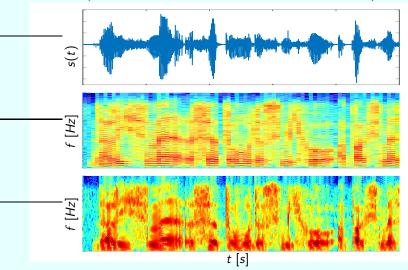
- F_i formant frequency (central freuency of rezonator)
- *B_i* band-width of formant (rezonator)
- Problems:
 - generally lower robustness of LPC analysis (data dependency)
 - sensitivity to choice of AR model order (for noisy conditions)
 - removing of redundant poles (negligible peaks)
 - sorting of computed poles (tracking of particular formants)

LPC-based formant estimation - example



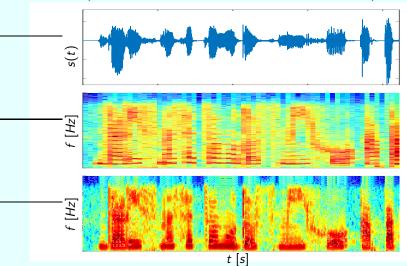
Formants in DFT spectrogram

Male voice - longer vs. shorter analyzing short-time frame (harmonic components vs. smoothed spectrum)



Formants in DFT spectrogram

Female voice - longer vs. shorter analyzing short-time frame (harmonic components vs. smoothed spectrum)



Thank you for your attention