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Part I

DFT-based spectral characteristics



Discrete Fourier Transform (DFT) - basic properties

Forward transform - DFT
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Transform : finite-length discrete signal →
→ finite-length discrete spectrum

Frequency resolution : N spectral samples
→ frequency range 0÷ fs or − fs

2 ÷ fs
2 resp. → ∆f =

fs
N

FFT: the algorithm for efficient and fast computation
(N = 2n !!!)



Various spectral representations of an utterance

Spectrogram of an utterance

!!! Long-time (averaged) spectrum - meaning-less representation !!!

Short-time spectral representations (for selected S-T frame)
DFT spectrum:
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Time- and frequency-domain representation of an utterance



DFT based spectral analysis of speech signal - SUMMARY

Specific settings for speech analysis:

speech is non-stationary
⇒ processing in short-time frames is necessary (spectrogram)

speech is quasi-stationary
(i.e. stationary in short-time sense - approx 10-100 ms)
⇒ 20-30 ms - length of short-time processing frame

DFT spectrum - standardly affected by spectral leakage
⇒ using of weighting window is necessary (Hamming)
⇒ segmentation with overlapping is necessary (usually 50%)

w [n] = 0, 54 − 0, 46 cos
2πn

N

pro 0 ≤ n ≤ N − 1 .
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Spectral leakage in short-time spectrum of speech

Spectrum of unweighted frame - spectral leackage
(masking of low-level details in HF band)
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Spectrum of weighted frame - spectral leackage is minimized
(low-level details in HF band are visible)

0 100 200 300 400 500
−0.4

−0.2

0

0.2

0.4

n − discrete time

s
w

[n
]

0 50 100 150 200 250
10

−4

10
−2

10
0

10
2

k − discrete frequency

|S
w

[k
]|
 [
d
B

]



Variability of utterance with same contents - influence on fo

Male 1

Male 2

Woman 1



Properties of short-time DFT spectrum of speech

particular phones can be resolved

stochastic component is presented

information about periodicity (fo) is presented

for typical values of fs rather high number of spectral samples
(redundant information)

⇓

Smooted spectral characteristics - more suitable choice

filter-banks (non-linear frequency scale)
LPC
cepstral analysis



Various spectral representations of an utterance

Spectrogram of whole utterance

Short-time spectral representations (for selected S-T frame)
DFT spectrum:
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Spectral analysis using filter banks

Main purpose → computation of power (energy) in given freq. bands

FB is typically based on DFT
⇒ filter are described by weights of particular DFT-bins for given
frequency resolution (NDFT) and fs

Gmel [j ] =

N/2∑

k=0

|S [k ]|2Hj [k ] for j = 1, ..., M

M - number of bands
- according to fs , NDFT and type of FB
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Spectral analysis using filter banks

Linear scale - DISADVANTAGE - rough resolution in low-frequncy band
and too detailed resolution in high-frequency band

(not related to the perception of frequency)



Filter bank with non-linear mel-frequency axis

Non-linear frequency warping - melodic scale

fmel = Mel (f ) = 2595 log10
(
1 +

f

700

)

f = InvMel (fmel ) = 700 · (10
fmel
2595 − 1)
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Triangular mel-scale filter bank (used for MFCC computation)
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Realization of filter banks

BF is again realized on the basis of DFT

⇒ particular filters - weights for given NDFT and fs
⇒ computation principle - same for various FB
⇒ other FB = just other weigths

Gmel [j] =

N/2∑

k=0

|S [k]|2Hmel ,j [k] for j = 1, ..., M

M - number of bands ..... typical value 20-30 bands
- according to fs and NDFT
- 22 for fs = 8 kHz and frame length of 25 ms
- 30 for fs = 16 kHz and frame length of 25 ms



Variability of the utterance within mel-based spectrogram
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Filter bank with Bark frequency axis

Bark scale - defined on the basis of critical bands

Ω = Bark (f ) = 6 ln
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Trapezoidal Bark-scale filter bank (used for PLPC computation)
(contains equal-loudness curves and application of intensity law)
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FB is realized again on the basis of DFT (for given NDFT a fs)



Preemphasis - compensation of HF-spectrum attenuation

Downslope of magnitude spectrum - high frequencies - lower energy

Preemphasis filter (1st-ord FIR):

s ′[n] = s[n]−m · s[n − 1]
(m = 0.97)
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Impact of preemphasis in short-time spectrum (DFT and LPC)
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Part II

LPC, AR modelling



Linear predictive analysis

Linear prediction : ŝ [n] = −

p∑

k=1

aks[n − k ] .
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Principles of LPC analysis

IDEA: more precise prediction → lower level of error signal

Criterion - power of error signal

J = E
{
e2[n]

}

Looking for coefficients ak ≡ Minimizing of prediction error
≡ looking for minimum of J, i.e.

∂J

∂ak
= 0 , for k = 1, 2, ..., p ⇒ p linear equations

Solutions and computational procedures
(for varying definitions of J):

autocorrelation method - the most frequent approach
(Yule-Walker)

Levinson-Durbin alg. (fast computation of Yule-Walker eqs)

Burg algorithm - originates from lattice structure of FIR filter



Autocorrelation method, Yule-Walker equations
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R [k ] .... autocorrelation coefficients of analyzed signal

RESULT:

ak .... autoregressive coefficients (AR model)

Pp = R [0] +

p∑

k=1

akR [k ] .... power of error signal



AR model of signal

Decorrelating (analyzing) filter : A(z) =

p∑

k=0

akz
−k

A(z)s[n] e[n]

Synthesis with real error signal (ideal case)
1

A(z)
s[n]e[n]

Synthesis with artifficial signal with unit power (AR model)
- G is related to the power of prediction error (G =

√
Pp)

G

A(z)
s̃[n]u[n]

H(z) =
G

A(z)
=

G

1 + a1z−1 + a2z−2 + · · ·+ apz−p



Spectral representations of AR model

General description of AR model (AR synthesis) in Z-domain

S̃(z) = H(z) · U(z)

Description of AR model in frequency domain

Ss̃(e
jΘ) = |H(e jΘ)|2 · Su(e

jΘ)

Properties and consequences: - Su(e
jΘ) is flat

→ shape of Ss̃(e
jΘ) is completely described by AR model

⇓

LPC spectrum (if Su(e
jΘ) = 1) S

S̃
(e jΘ) = |H(e jΘ)|2

S
S̃
(e jΘ) =

G 2

|A(e jΘ)|2
=

G 2

|1 + a1e−jΘ + a2e−j2Θ + ...+ ape−jpΘ|2

⇓
coefficients ak .... compressed spectral reprezentation



Comparison of LPC and DFT spectra

SS̃(e
jΘ) = |H(e jΘ)|2 ≈
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AR model = “all-pole” filter, peak modelling
(resonators of vocal tract)

general peak = a couple of complex conjugated poles

real pole models a peak at 0 or fs/2

higher order of AR model = more peaks in LPC spectrum
→ typical values: p = 10 for fs = 8 kHz, p = 16 for fs = 16 kHz



Computation of LPC in MATLAB

1 Computation of AR model parameters

Function lpc
[a, Ep] = lpc ( s, p ) ;

a . . . autoregressive coefficients (includinng a0 = 1)
Ep . . . power of prediction error
s . . . analyzed signal
p . . . order of AR model

2 Computation of LPC spectrum

Function freqz
H = freqz ( sqrt(Ep), a, N ) ;

H . . . complex LPC spectrum
N . . . number of points of LPC spectrum



Levinson-Durbin algorithm

Fast and recurent computation of coefficients ak defined by
autocorrelation method (fast solution of Yule-Walker equations)

Inicialization: P0 = R [0] a
(1)
1 = k1 = −

R [1]

R [0]

P1 = P0 · (1− k2
1 )

Steps for m = 2, 3, . . . , p:

a(m)
m = km = −

R [m] +

m−1∑

j=1

a
(m−1)
j R [m− j ]

Pm−1

a
(m)
j = a

(m−1)
j + kma

(m−1)
m−j , j = 1, 2, . . . , m − 1

Pm = Pm−1 · (1− k2
m)

Result: ai = a
(p)
i , i = 1, 2, . . . , p

kk .... reflection coefficients (lattice structure of the filter)
.... PARCOR coefficients (partial correlation coeff.)



AR model - standard and lattice structure

Trasnversal structure of analyzing FIR filter:
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kk ..... reflection coefficients, relationship kk vs. ak - Levinson recursion

Inicialization:
a
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a(m)
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a
(m)
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AR model with lattice structure

Trasnversal structure of synthezing all-pole IIR filter:

+++ +
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Lattice structure of synthezing all-pole IIR filter:

+
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Properties of reflection coefficients kk :

- stable synthezing filter for −1 < kk < 1
- more robust than ak for low variability of signal (→ suitable features)
- suitable for implementation (less problems due to quantization)
- possible interpolation
- direct computation of reflection coeff. possible → Burg algorithm



Burg algorithm

Criterion to be minimized (for each section of lattice structure):

Jm =
1

2

N−1∑

n=0

[(
e(m)[n]

)2

+
(
g (m)[n]

)2
]

for m = 1, 2, ..., p .

Inicialization: e(0)[n] = g (0)[n] = s[n]

Computation for m = 1, 2, 3, . . . , p:

km = −

2 ·

N−1∑

n=m

(
e(m−1)[n] · g (m−1)[n − 1]

)

N−1∑

n=m

(
e(m−1)[n]

)2

+

N−1∑

n=m

(
g (m−1)[n − 1]

)2

Always fulfilled |km| < 1 −→ always stable solution

e(m)[n] = e(m−1)[n] + km · g (m−1)[n − 1], n = 0, 1, . . . , N −m

g (m)[n] = g (m−1)[n − 1] + km · e(m−1)[n], n = 0, 1, . . . , N −m

Further computations: - autoregr. coeff ak - Lev. rec., see L.-D. alg.
- power of prediction error Pk - see L.-D. alg.



Part III

Formants and their Estimation



Formants - definition

Formant (formant frequency)
→ central frequency of vocal tract rezonator

significant peaks in SMOOTHED short-time spectrum

significant formants are F1 - F4, i.e. in the band upto 4 kHz

F5 - negligible (also higher estimation error)

!! Do not confuse formant vs. pitch f0 !!
( f0 is not identified in smoothed spectrum)

Applications:

elementar speech analysis
formant speech synthesis
transformations of voice characteristics (Lombard effect)



Formants of vowels (formant triangle)

I E A O U
F1 300 - 500 480 - 700 700 - 1100 500 - 700 300 - 500
F2 2000 - 2800 1560 - 2100 1100 - 1500 850 - 1200 600 - 1000
F3 2600 - 3500 2500 - 3000 2500 - 3000 2500 - 3000 2400 - 2900



Formants - estimation techniques

from smoothed DFT spectrum
- short window, zero-padding, looking for maxima
- not too precise

Using LPC
- LPC analysis - smoothed spectrum
- peaks in LPC spectrum - rezonators of vocal tract
- the most frequently used technique

Using cepstral analysis
- estimation of smoothed spectrum using cepstral liftering
- looking for the maxima



Formants - short-time spectrum

Phone ’a’ - formants in smoothed and non-smoothed spectrum

0 500 1000 1500 2000 2500 3000 3500 4000
-30

-20

-10

0

10

20

30

40

50

---> frekvence[Hz]

[d
B

]

DFT
LP
cepF1

LP
F2

LP

F3
LP

F4
LP

F1
DFT

F2
DFT

F3
cep

F4
DFT

F1
cep

F2
cep

F3
DFT

F4
cep



Formants - LPC-based estimation

peaks in LPC spectrum - rezonators = formants

peaks are determined by poles pi of transfer function H(z)

Fi =
arg pi

2π
· fs

Bi = −
ln |pi |

π
· fs

Fi - formant frequency (central freuency of rezonator)

Bi - band-width of formant (rezonator)

Problems:

generally lower robustness of LPC analysis (data dependency)
sensitivity to choice of AR model order (for noisy conditions)
removing of redundant poles (negligible peaks)
sorting of computed poles (tracking of particular formants)



LPC-based formant estimation - example

Waveform of signal
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Formants in DFT spectrogram

Male voice - longer vs. shorter analyzing short-time frame
(harmonic components vs. smoothed spectrum)
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Formants in DFT spectrogram

Female voice - longer vs. shorter analyzing short-time frame
(harmonic components vs. smoothed spectrum)
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Thank you for your attention


